Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{La}_{2} \mathrm{SiS}_{5}$

M. Daszkiewicz, ${ }^{\text {a }}{ }^{*}$ L. D. Gulay, ${ }^{\text {b }}$ I. R. Ruda, ${ }^{\text {c }}$
 O. V. Marchuk ${ }^{\text {c }}$ and A. Pietraszko ${ }^{\text {a }}$

${ }^{\text {a }}$ W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna Street 2, PO Box 1410, 50-950 Wrocław, Poland, ${ }^{\mathbf{b}}$ Department of Ecology and Protection of Environment, Volyn State University, Voli Avenue 13, 43009 Lutsk, Ukraine, and ${ }^{\mathbf{C}}$ Department of Physical and Colloidal Chemistry, Volyn State University, Voli Avenue 13, 43009 Lutsk, Ukraine
Correspondence e-mail: m.daszkiewicz@int.pan.wroc.pl

Received 8 November 2007; accepted 13 November 2007

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{Si})=0.002 \AA$;
R factor $=0.023 ; w R$ factor $=0.040 ;$ data-to-parameter ratio $=24.9$.

The lattice parameters and space group for dicerium pentathiosilicate, $\mathrm{La}_{2} \mathrm{SiS}_{5}$, have been reported previously [Michelet, Perez, Etienne \& Darriet-Duale (1970.) C. R. Seances Acad. Sci. Ser. C 271, 513-515]. Moreover, isotypism with the $\mathrm{La}_{2} \mathrm{GeS}_{5}$ structure (space group $P 2_{1} / c$) has been assigned, but a structure refinement was not performed. The present singlecrystal study reveals that the two independent La atoms are surrounded by 8 and 9 S atoms, forming bi- and tricapped trigonal prisms, respectively, whereas the Si atom has a slightly distorted tetrahedral coordination. The capped trigonal prisms are linked to tetrahedra via corners and edges; they are also connected to each other by sharing faces.

Related literature

For a previous study of the title compound, see: Michelet et al. (1970).

Experimental

Crystal data
$\mathrm{La}_{2} \mathrm{SiS}_{5}$
$M_{r}=466.21$
Monoclinic, $P 2_{1} / c$
$a=7.6208$ (12) \AA
$b=12.6407$ (15) \AA
$c=7.8998$ (12) \AA
$\beta=101.559(13)^{\circ}$

Data collection
Kuma KM-4 diffractometer with CCD area-detector
Absorption correction: numerical (CrysAlis RED; Oxford
Diffraction, 2006)
$T_{\text {min }}=0.208, T_{\text {max }}=0.567$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad 73$ parameters
$w R\left(F^{2}\right)=0.040$
$S=0.97$
1818 reflections

9434 measured reflections 1818 independent reflections 1465 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$

Table 1
Selected bond lengths (\AA).

La1-S1	3.1154 (13)	La2-S3 ${ }^{\text {vii }}$	2.9767 (13)
$\mathrm{La} 1-\mathrm{S} 2^{\text {i }}$	2.9213 (13)	La2-S4 ${ }^{\text {vi }}$	3.0850 (13)
La1-S2 ${ }^{\text {ii }}$	2.9767 (13)	La2-S4	3.1453 (12)
La1-S3 ${ }^{\text {iii }}$	2.8456 (12)	La2-S5 ${ }^{\text {vi }}$	3.1040 (13)
La1-S3	2.8635 (13)	La2-S5 ${ }^{\text {vii }}$	3.2936 (13)
La1-S4 ${ }^{\text {iv }}$	2.9670 (13)	La2-S1 ${ }^{\text {viii }}$	3.3745 (13)
La1-S5	3.0184 (13)	$\mathrm{Si}-\mathrm{S} 1$	2.1015 (18)
La1-S5 ${ }^{\text {ii }}$	3.0420 (13)	$\mathrm{Si}-\mathrm{S} 2$	2.0980 (17)
$\mathrm{La} 2-\mathrm{S} 1^{\text {v }}$	3.1226 (14)	Si-S4	2.1249 (18)
La2-S2	2.9350 (13)	Si-S5	2.1522 (19)
$\mathrm{La} 2-\mathrm{S}^{\text {vi }}$	2.8991 (12)		
$\begin{aligned} & \text { Symmetry codes: (i) }-x+2, y-\frac{1}{2},-z+\frac{1}{2} ; \text { (ii) } x,-y+\frac{1}{2}, z-\frac{1}{2} ; \text { (iii) }-x+1,-y,-z ; \text { (iv) } \\ & x,-y+\frac{1}{2}, z+\frac{1}{2} ; \quad \text { (v) }-x+2,-y+1,-z ; \quad \text { (vi) }-x+1,-y+1,-z ; \\ & -x+1, y+\frac{1}{2},-z+\frac{1}{2} ; \text { (viii) }-x+2, y+\frac{1}{2},-z+\frac{1}{2} \text {. } \end{aligned}$			

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2007).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2163).

References

Brandenburg, K. (2005). DIAMOND. Release 3.0e. Crystal Impact GbR, Bonn, Germany.
Michelet, A., Perez, G., Etienne, J. \& Darriet-Duale, M. (1970). C. R. Seances Acad. Sci. Ser. C, 271, 513-515.
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.30.3. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

$\mathrm{La}_{2} \mathrm{SiS}_{5}$

M. Daszkiewicz, L. D. Gulay, I. R. Ruda, O. V. Marchuk and A. Pietraszko

Comment

The formation of the ternary compound $\mathrm{La}_{2} \mathrm{SiS}_{5}$ has been reported previously (Michelet et al., 1970), but only lattice parameters were determined and isotypism with the $\mathrm{La}_{2} \mathrm{GeS}_{5}$ structure was established during the original study. The crystal structure of $\mathrm{La}_{2} \mathrm{SiS}_{5}$ has now been investigated by means of single-crystal X-ray diffraction data and is presented in this communication.

The unit cell and coordination polyhedra of the La and Si atoms are shown in Fig. 1. Six S atoms surround both independent La atoms leading to a distorted trigonal-prismatic arrangement. For La , two additional S atoms and for La 2 three additional S augment these basic polyhedra to bi- and tri-capped trigonal prisms, respectively. The Si atom has a slightly distorted tetrahedral environment of S atoms. The capped trigonal prisms are linked to the [SiS_{4}] tetrahedra by corners and edges, whereas the capped trigonal prisms are connected to each other also by sharing faces.

Experimental

Single crystals of the title compound were grown by fusion of the elemental constituents (Alfa Aesar; purity $>99.9 \%_{\text {wt }}$) in the stoichiometric ratio of $\mathrm{La}: \mathrm{Si}: S=2: 1: 5$ in an evacuated silica ampoule. The ampoule was heated in a tube furnace with a heating rate of $30 \mathrm{~K} / \mathrm{h}$ to 1420 K and was kept at this temperature for 4 h . It was then cooled down slowly ($10 \mathrm{~K} / \mathrm{h}$) to 770 K and annealed at this temperature for further 240 h and finally quenched in cold water. The obtained yellow crystals were selected from the brown-coloured compact product. The crystals had a prismatic habit and maximal lengths of 0.2 mm .

Refinement

The highest peak is located $2.19 \AA$ away from Si and the deepest hole $0.02 \AA$ away from La2.

Figures

Fig. 1. The structure of $\mathrm{La}_{2} \mathrm{SiS}_{5}$ viewed along the a axis. Displacement ellipsoids are shown at the 50% probability level.

dicerium pentathiosilicate

Crystal data
 $\mathrm{La}_{2} \mathrm{SiS}_{5}$
 $$
F_{000}=832
$$

supplementary materials

$M_{r}=466.21$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.6208$ (12) \AA
$b=12.6407(15) \AA$
$c=7.8998(12) \AA$
$\beta=101.559$ (13) ${ }^{\circ}$
$V=745.57(19) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=4.153 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1465 reflections
$\theta=3.1-28.3^{\circ}$
$\mu=12.75 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.13 \times 0.09 \times 0.06 \mathrm{~mm}$

1818 independent reflections
1465 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\max }=28.3^{\circ}$
$\theta_{\min }=3.1^{\circ}$
$h=-10 \rightarrow 9$
$k=-15 \rightarrow 16$
$l=-9 \rightarrow 10$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.040$
$S=0.97$
1818 reflections
73 parameters

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0134 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.97 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.22 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculat-
ing R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
La1	$0.74054(4)$	$0.09529(2)$	$0.04559(3)$	$0.00735(8)$
La2	$0.66488(4)$	$0.66522(2)$	$0.13363(4)$	$0.00926(8)$
Si	$0.83032(18)$	$0.38347(10)$	$0.09619(16)$	$0.0080(3)$
S1	$1.02312(17)$	$0.27396(9)$	$0.05064(15)$	$0.0111(3)$
S2	$0.92134(17)$	$0.50034(9)$	$0.28160(15)$	$0.0092(3)$
S3	$0.36080(16)$	$0.12101(9)$	$0.00203(15)$	$0.0085(3)$
S4	$0.67558(17)$	$0.47033(9)$	$-0.11162(15)$	$0.0103(3)$
S5	$0.62829(17)$	$0.29811(9)$	$0.19537(15)$	$0.0100(3)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La 1	$0.00743(15)$	$0.00657(14)$	$0.00813(14)$	$0.00046(11)$	$0.00170(11)$	$0.00066(11)$
La 2	$0.00955(16)$	$0.00836(15)$	$0.00978(14)$	$0.00071(12)$	$0.00175(12)$	$0.00164(11)$
Si	$0.0087(7)$	$0.0075(7)$	$0.0078(6)$	$-0.0011(5)$	$0.0019(5)$	$-0.0009(5)$
S 1	$0.0101(7)$	$0.0090(6)$	$0.0154(6)$	$-0.0001(5)$	$0.0056(5)$	$-0.0010(5)$
S 2	$0.0098(7)$	$0.0081(6)$	$0.0094(6)$	$-0.0015(5)$	$0.0011(5)$	$-0.0023(5)$
S 3	$0.0071(6)$	$0.0074(6)$	$0.0110(6)$	$0.0005(5)$	$0.0021(5)$	$-0.0007(5)$
S 4	$0.0119(7)$	$0.0107(6)$	$0.0078(6)$	$0.0013(5)$	$0.0012(5)$	$-0.0003(5)$
S 5	$0.0111(7)$	$0.0084(6)$	$0.0109(6)$	$-0.0025(5)$	$0.0029(5)$	$-0.0009(5)$

Geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

La1-S1	3.1154 (13)
La 1 - $\mathrm{S}^{\text {i }}$	2.9213 (13)
La1-S2 ${ }^{\text {ii }}$	2.9767 (13)
La1-S3 ${ }^{\text {iii }}$	2.8456 (12)
La1-S3	2.8635 (13)
La1-S4 ${ }^{\text {iv }}$	2.9670 (13)
La1-S5	3.0184 (13)
La1-S5 ${ }^{\text {ii }}$	3.0420 (13)
La2-S1 ${ }^{\text {v }}$	3.1226 (14)
La2-S2	2.9350 (13)
La2-S3 ${ }^{\text {vi }}$	2.8991 (12)
La2-S3 ${ }^{\text {vii }}$	2.9767 (13)
La2-S4 ${ }^{\text {vi }}$	3.0850 (13)
La2-S4	3.1453 (12)
La2-S5 ${ }^{\text {vi }}$	3.1040 (13)
La2-S5 ${ }^{\text {vii }}$	3.2936 (13)

Si-S1	2.1015 (18)
Si-S2	2.0980 (17)
Si-S4	2.1249 (18)
Si-S5	2.1522 (19)
S 1 - La $2^{\text {v }}$	3.1226 (13)
S 1 - La $2^{\text {i }}$	3.3745 (13)
S2-La1 ${ }^{\text {viii }}$	2.9213 (13)
S2-La1 ${ }^{\text {iv }}$	2.9767 (13)
S3-La $1^{\text {iii }}$	2.8456 (12)
S3-La2 ${ }^{\text {vi }}$	2.8991 (12)
S3-La2 ${ }^{\text {ix }}$	2.9767 (13)
S4-La $1^{\text {ii }}$	2.9670 (13)
S4-La2 ${ }^{\text {vi }}$	3.0850 (13)
S5-La $1^{\text {iv }}$	3.0420 (13)
S5-La2 ${ }^{\text {vi }}$	3.1040 (13)
S5-La2 ${ }^{\text {ix }}$	3.2936 (13)

La2-S1 ${ }^{\text {viii }}$	3.3745 (13)
S3 ${ }^{\text {iii }}$-La1-S3	81.50 (4)
S3 ${ }^{\text {iii }}$-La1-S $2^{\text {i }}$	81.81 (3)
S3-La1-S2 ${ }^{\text {i }}$	151.44 (4)
S3 ${ }^{\text {iii }}-\mathrm{La} 1-\mathrm{S} 4^{\text {iv }}$	76.21 (3)
S3-La1-S4 ${ }^{\text {iv }}$	77.99 (4)
S2 ${ }^{\text {i }}$-La $1-\mathrm{S} 4^{\text {iv }}$	75.61 (4)
S3 ${ }^{\text {iii }}-\mathrm{La} 1-\mathrm{S} 2{ }^{\text {ii }}$	70.65 (3)
S3-La1-S2 ${ }^{\text {ii }}$	124.09 (4)
S2 ${ }^{\text {i }}$-Lal-S2 ${ }^{\text {ii }}$	70.84 (4)
S4 ${ }^{\text {iv }}$-La1-S2 ${ }^{\text {ii }}$	135.33 (3)
S3 ${ }^{\text {iii }}$-La1-S5	141.01 (4)
S3-La1-S5	65.90 (3)
S2 ${ }^{\text {i }}$-La1-S5	117.29 (3)
S4 ${ }^{\text {iv }}$-La1-S5	76.55 (3)
S2 ${ }^{\text {ii }}$-La1—S5	145.78 (3)
S3 ${ }^{\text {iii }}-\mathrm{La} 1-\mathrm{S} 5^{\text {ii }}$	106.62 (3)
S3-La1-S5 ${ }^{\text {ii }}$	75.35 (4)
S2 ${ }^{\text {i }}$-La $1-\mathrm{S} 5^{\text {ii }}$	131.91 (4)
S4 $4^{\text {iv }}-\mathrm{La} 1-\mathrm{S} 5^{\text {ii }}$	152.37 (4)
S $21 i$	68.16 (3)
S5-La1-S5 ${ }^{\text {ii }}$	85.99 (2)
S3 ${ }^{\text {iii }}$-La1-S1	150.10 (3)
S3-La1-S1	126.77 (3)
S2 ${ }^{\text {i }}$-La1-S 1	75.47 (3)
S4 ${ }^{\text {iv }}$-La1-S1	115.61 (3)
S2 ${ }^{\text {ii }}$-La1—S1	83.54 (3)
S5-La1-S1	68.20 (3)
S5 ${ }^{\text {ii }}$-La1—S1	76.01 (3)
S3 ${ }^{\text {vi }} \mathrm{La} 2-\mathrm{S} 2$	143.07 (4)
S3 ${ }^{\text {vi }}-\mathrm{La} 2-\mathrm{S} 3{ }^{\text {vii }}$	121.32 (3)
S2-La2-S3 ${ }^{\text {vii }}$	69.46 (3)
S3 ${ }^{\text {vi }}-\mathrm{La} 2-\mathrm{S} 4^{\text {vi }}$	120.21 (3)
S2-La2-S4 ${ }^{\text {vi }}$	96.52 (3)
S3 ${ }^{\text {vii }}$-La2-S4 ${ }^{\text {vi }}$	74.50 (3)
$\mathrm{S} 3{ }^{\text {vi }}-\mathrm{La} 2-\mathrm{S} 5^{\text {vi }}$	64.36 (3)
S2-La2-S5 ${ }^{\text {vi }}$	138.56 (3)
S3 ${ }^{\text {vii }}$ La2- $5^{\text {vi }}$	131.45 (4)
S4 ${ }^{\text {vi }}-\mathrm{La} 2-\mathrm{S} 5^{\mathrm{vi}}$	65.14 (3)
S3 ${ }^{\text {vi }}-\mathrm{La} 2-\mathrm{S} 1^{\text {v }}$	66.39 (3)

81.50 (4)
81.81 (3)
151.44 (4)
76.21 (3)
77.99 (4)
75.61 (4)
70.65 (3)
124.09 (4)
135.33 (3)
141.01 (4)
65.90 (3)
11.29 (3)
145.78 (3)
106.62 (3)
75.35 (4)
152.37 (4)
85.99 (2)
150.10 (3)
126.77 (3)
115.61 (3)
68.20 (3)
76.01 (3)
143.07 (4)
1.32 (3)
120.21 (3)
96.52 (3)
74.50 (3)
138.56 (3)
131.45 (4)
66.39 (3)

S4 ${ }^{\text {vii }}$-La2-S5 ${ }^{\text {vii }}$	71.00 (3)
S $5^{\text {vi }}-\mathrm{La} 2-\mathrm{S} 5^{\text {vii }}$	80.42 (3)
S1 ${ }^{\text {v }}$-La2- $5^{\text {vii }}$	135.08 (3)
S4-La2-S5 ${ }^{\text {vii }}$	139.07 (3)
S3 ${ }^{\text {vi }}$-La2-S $1^{\text {viii }}$	83.05 (3)
S2-La2-S1 ${ }^{\text {viii }}$	71.37 (3)
S3 ${ }^{\text {vii }}$ La2- $\mathrm{S}^{\text {viii }}$	62.28 (3)
S4 ${ }^{\text {vi }}$-La2-S1 ${ }^{\text {viii }}$	136.72 (3)
S5 ${ }^{\text {vi }}$-La2-S1 ${ }^{\text {viii }}$	147.19 (3)
S1 ${ }^{\text {v }}$-La2-S1 ${ }^{\text {viii }}$	75.80 (3)
S4-La2-S1 ${ }^{\text {viii }}$	132.30 (3)
S5 ${ }^{\text {vii }}$ La2- $\mathrm{S}^{\text {viii }}$	85.67 (3)
$\mathrm{S} 2-\mathrm{Si}-\mathrm{S} 1$	116.02 (8)
S2-Si-S4	103.31 (7)
S1-Si-S4	120.45 (8)
S2-Si-S5	105.04 (7)
$\mathrm{S} 1-\mathrm{Si}-\mathrm{S} 5$	107.93 (7)
S4-Si-S5	102.33 (8)
Si-S1-La1	88.54 (6)
$\mathrm{Si}-\mathrm{S} 1-\mathrm{La} 2{ }^{\text {v }}$	122.78 (6)
La $1-\mathrm{S} 1-\mathrm{La} 2^{\text {v }}$	139.60 (4)
$\mathrm{Si}-\mathrm{S} 1-\mathrm{La} 2{ }^{\text {i }}$	123.71 (6)
La1-S1-La2 ${ }^{\text {i }}$	95.57 (3)
$\mathrm{La} 2{ }^{\mathrm{v}}-\mathrm{S} 1-\mathrm{La} 2{ }^{\text {i }}$	87.44 (3)
Si-S2-La1 ${ }^{\text {viii }}$	138.84 (7)
Si-S2-La2	96.97 (6)
La1 ${ }^{\text {viii }}$-S2-La2	110.42 (4)
$\mathrm{Si}-\mathrm{S} 2-\mathrm{La} 1^{\text {iv }}$	93.92 (6)
La $1^{\text {viii }}$-S2—La $1^{\text {iv }}$	109.16 (4)
La2-S2-La $1^{\text {iv }}$	101.69 (4)
La $1{ }^{\text {iii }}$-S3-La1	98.50 (4)
La $1^{\text {iii }}-\mathrm{S} 3-\mathrm{La} 2{ }^{\text {vi }}$	148.24 (5)
La1-S3-La2 ${ }^{\text {vi }}$	98.16 (4)
La $1^{\text {iii }}-\mathrm{S} 3-\mathrm{La} 2{ }^{\text {ix }}$	103.86 (4)
La1-S3-La2 ${ }^{\text {ix }}$	99.54 (4)
La $2{ }^{\text {vi }}-\mathrm{S} 3-\mathrm{La} 2{ }^{\text {ix }}$	99.78 (3)
$\mathrm{Si}-\mathrm{S} 4-\mathrm{La} 1^{\text {ii }}$	113.10 (6)
$\mathrm{Si}-\mathrm{S} 4-\mathrm{La} 2{ }^{\text {vi }}$	94.98 (6)
La $1^{\text {iii }}$-S4-La2 ${ }^{\text {vi }}$	94.91 (3)

supplementary materials

S2-La2-S1 ${ }^{\text {V }}$	81.49 (3)	Si-S4-La2	90.44 (5)
S3 ${ }^{\text {vii }}$-La2-S $1^{\text {v }}$	134.48 (3)	La $1^{\text {ii }}-\mathrm{S} 4-\mathrm{La} 2$	144.17 (4)
$\mathrm{S} 4{ }^{\mathrm{vi}}-\mathrm{La} 2-\mathrm{S} 1^{\mathrm{v}}$	145.17 (3)	La2 ${ }^{\text {vi }}-\mathrm{S} 4-\mathrm{La} 2$	110.15 (4)
$\mathrm{S} 5^{\mathrm{vi}}-\mathrm{La} 2-\mathrm{S} 1^{\mathrm{v}}$	93.47 (4)	Si-S5-La1	90.20 (6)
$\mathrm{S} 3{ }^{\text {vi }} \mathrm{La} 2-\mathrm{S} 4$	120.70 (3)	Si-S5-La ${ }^{\text {iv }}$	91.02 (5)
S2-La2-S4	65.91 (3)	La1-S5-La $1^{\text {iv }}$	133.05 (4)
S3 ${ }^{\text {vii }} \mathrm{La} 2-\mathrm{S} 4$	117.61 (3)	Si-S5-La2 ${ }^{\text {vi }}$	93.88 (5)
$\mathrm{S} 4{ }^{\text {vi }}$-La2-S4	69.85 (4)	La1-S5-La2 ${ }^{\text {vi }}$	90.66 (3)
S5 ${ }^{\text {vi }}$-La2-S4	72.80 (3)	La $1^{\text {iv }}-\mathrm{S} 5-\mathrm{La} 2^{\text {vi }}$	136.01 (4)
S1 ${ }^{\text {v }}$-La2-S4	77.85 (3)	$\mathrm{Si}-\mathrm{S} 5-\mathrm{La} 2{ }^{\text {ix }}$	176.92 (6)
S3 ${ }^{\text {vi }}$-La2-S5 $5^{\text {vii }}$	71.04 (3)	La1-S5-La $2^{\text {ix }}$	89.79 (3)
S2-La2-S5 ${ }^{\text {vii }}$	130.63 (3)	$\mathrm{La} 1^{\mathrm{iv}}$ - $\mathrm{S} 5-\mathrm{La} 2{ }^{\text {ix }}$	86.74 (3)
S3 ${ }^{\text {vii }}$-La2—S $5^{\text {vii }}$	61.17 (3)	La $2^{\text {vi }}-\mathrm{S} 5-\mathrm{La} 2^{\text {ix }}$	89.20 (3)

supplementary materials

Fig. 1

